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A quantitative structure-property relationship (QSPR) study
based on multiple linear regression (MLR) and artificial neural
network (ANN) techniques is carried out to investigate the
retention time behavior of some pesticides on the DB-5ms
fused-silica column in gas chromatography. Five descriptors
selected in the MLR model are: first component WHIM index
(E1v), highest eigenvalue n.7 of burden matrix / weighted by
atomic van der waals volume (BEHv7); average connectivity index
Chi-2 (X2a), 3D-MoRSE signal 23 weighted by atomic Sanderson
electronegativity (MoR23m); and principal moments of

inertia B (PMIB). A 5-5-1 ANN is also generated to investigate the
retention behavior of described pesticides using the same
descriptors MLR model as inputs. The statistical parameters
derived from MLR and ANN for all molecules are: correlation
coefficient (R)y g = 0.929, standard errors (SE)p g = 3.452, Rynn =
0.943, and SE,\N = 3.112. The mean of relative errors between the
MLR and ANN calculated and the experimental values of the
retention times for the prediction set are 13.8% and 9.04%,
respectively. The correlation coefficient and standard error of
ANN model compared with MLR models showed the superiority
of ANNs over regression models. This is partly due to the fact
that ANN considers the interaction between different

parameters as well as nonlinear relation.

Introduction

Pesticide is a term used for a broad range of chemicals (syn-
thetic or natural) that serve to control insects, fungi, bacteria,
and other pests. Monitoring of pesticide residue is one of the
most important aspects in minimizing potential hazards to
human health. Numerous analytical methods for determina-
tion pesticide residue have been published (1-3). The one most
frequently used is gas chromatography (GC).

Quantitative structure—property relationships (QSPRs) have
been demonstrated to be a powerful tool for the investigation
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of the chromatographic parameters. QSPRs have been used to
obtain simple models to explain and predict the chromato-
graphic behavior of various classes of compounds. QSPRs have
been used extensively to explain separation mechanisms, pre-
dict retention behavior, and characterize the physicochemical
properties of solutes in thin-layer chromatography (4), GC
(5,6), and high-performance liquid chromatography (7,8). Also,
there are some reports on QSPR studies in capillary elec-
trophoresis (9-11). QSPR study cannot only develop a method
for the prediction of the property of interests but also can
identify and describe important structural features of mole-
cules that are responsible for variations in molecular proper-
ties. The advantage of this approach over other methods lies in
the fact that the descriptors used can be calculated from struc-
ture alone and are not dependent on any experiment proper-
ties. This method has become very useful in the prediction of
physicochemical properties.

An artificial neural network (ANN) consists of many path-
ways and nodes organized into a sequence of layers. The first
layer is an input layer with one node for each variable. The last
layer is an output layer consisting of one node for the variable
to be investigated. In between layers, there is a series of one or
more hidden layer(s) consisting of a number of nodes, which
are responsible for learning. Nodes of one layer are connected
to the nodes of other layer. Each connection is represented by
a number called weight. Initially, a learning phase is defined in
which each of the input parameter is applied to a processing
element. The weight between these parameters is adjusted
until the output is correct. Then the system can be applied to
unknowns (12). ANNs have been applied to a wide range chem-
ical problems such as: simulation of mass spectra (13), pre-
diction of carbon-13 NMR shift (14), ion interaction (15), GC
(16,17), and liquid chromatography (12,18). It also can be used
in classification and pattern recognition.

The goal of the present work was to generate a QSPR model
between the molecular based structural parameters and
observed retention time of some pesticides on the fused silica
column. Then, this ANN was employed for the prediction of
retention time of some pesticides.
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Table I. Data Set and Corresponding Observed and Table I. (continued) Data Set and Corresponding
Predicted Values of the Retention Time Observed and Predicted Values othe Retention Time
Retention %Error  %Error Retention %Error  %Error

Pesticide name time  MLR ANN  (MLR)  (ANN) Pesticide name time  MLR ANN  (MLR)  (ANN)
Training set Ethion 33.81 4292 3782 2695  11.87
Ametryn 22,65 1996  23.19 -11.86 2.38 Fenitrothion 2376 29.80  25.25  25.66 6.26
Bromopropylate 38.57 35.83 3597 -7.1 -6.75 Fenthion 25.00 28.41 28.00  13.63 11.99
Buprofezin 31.54 2733 2794 -1333 -11.42 Fenvalerate 38.34 2934 3505 -2346  -8.59
Carbaryl 2223 2179 2454 -1.96 10.40 Bendiocarb 15.23 1696  15.31 11.35 .56
Carbofuran 17.37 1848 2036 6.39  17.24 Malathion 2467 2338 2217 =523 -10.12
Chinomethionate 28.04 20678  25.51 -4.5 -9.04 Metalaxyl 2294 2297 2090 a2 -8.89
Atrazine 17.54 1252 20.55 -28.65 17.17 Metribuzin 21.57 1897 2292 -12.04 6.26
Coumaphos 43.26 4175 3884 348 -10.23 Oxadiazon 31.37  31.61 32.85 .75 4.72
Deltamethrin 4787 47.29 4457 121 -6.89 Permethrin 43.01 40.88 37.87 496 -11.95
Demeton-s-methy! 23.20  23.40  25.07 0.85 8.05 Bifenox 39.71  36.70  35.64  -7.58 -10.24
sulfone Pirimicarb 2091 14.00 2291 -33.04 9.57
Dimethoate 16.81 1528  19.09 -9.13 13.59 Propoxur 13.41 9.63 1414 -28.21 5.44
Dioxathion 18.09 2632  22.00  45.52 21.64 Profenofos 30.61 3530 3458  15.32 12.97
Diphenylamine 13.62 1612 2484 1837  82.38 Simazine 1717 1218 21.06 -29.09  22.66
Disulfoton 19.41 1970 21.10 1.48 8.72 Cis-tetrachlorovinphos  29.37  33.46  31.61  13.94 7.61
Ethoprophos 1401 1325 1759 541  25.52 Triazophos 3458 3532 3331 214 -3.68
Azinphos-methyl 40.52 3878  36.08 43  -10.97 Vamidothion 29.06 3439  32.87 18.33 13.12
Etrimfos 20.25 2470 2358 2198 16.43
Fenobucarb 1332 1596 1258 19.79  -5.55 . |
Folpet 2776 2918 2855 512 285 Experimenta
Formothion 20.67 2170  26.74 498  29.39
Iprodione 38.21 3936 36.28 3.02 -5.04 Data set
Isoprocarb 11.67 1201 1542 295 3215 The data set of the retention time of pesticides on DB-5ms
Lenacil 3525 3354 3264 485 742 fused-silica column was taken from the work by X.G. Chu (19).
Mecarbam 2794 2537 2401 92 -14.08 A collection of 70 pesticides was chosen as the data set and was
Methidathion 2855 3063 2735 728 421 randomly divided into two groups: a training set and a predic-
Methiocarb 23.74 1971 2001 1698 -15.28 tion set consisting of 45 and 25 molecules, respectively. The
Metolachlor 2477 2436 2291 -1.65 -7.52 . . . . .y

. molecules in the data set including different pesticides are
Benfluralin 15.58  16.75 14.51 7.52 -6.90 . ..

, shown in Table I. The training set was used for the model gen-
o,p'-DDT 33.40 30.82  29.31 -7.73  -12.24 . L .
Oxyfluorfen 3179 3247 2937 215 76 eration and the prediction set was used for the evaluation of the
Parathion 2507 2534 2504 069 -53 generated model.

Parathion-methyl 22.00 23.87  24.26 8.48 10.27 .

Phorate 15.82 1411 18.42  -10.82 16.45 Descriptors

Phosalone 4065 36.89 3899 -9.24 407 The molecular descriptors used to search for the best model
p,p-DDD 33.26 3518 3273 577 -1.59 of the retention time were calculated by the Dragon program
p,p’-DDE 3076  34.42  34.04 11.91 10.67

p,p-DDT 3546  33.51 3249 549  -8.39

Prometryn 2295 2205 2572 =391 1210 Table Il. Specification of Multiple Linear Regression
Prothiofos 3041 3072 2794 1 811 Models

Quinalphos 27.84  30.06  29.87 7.96 7.28

Bifenthrin 39.16 39.85 34.12 1.77  -12.86 Descriptors Notation Coefficient
Quizalofob-p-ethyl ~ 44.69  40.78  41.69 -8.75  -6.71

Terbufos 1840 2142 1551 164  -15.68 Constant 57.368 (+ 13.276)
Trifluralin 1545 1428 1248 -7.58 -19.24 . )

Bromophos-ethyl 98.85 3490 2548 2098 —11.67 First component WHIM index Elv 48.248 (+ 7.286)
Prediction set Highest eigenvalue n.7 of burden  BEHV7 7.566 (+ 2.006)
Chlorofenson 2980 3634 3256 2195 926 matrix/weighted by atomic van der

Chlorobenzilate ~ 32.82 3205 3123 205 486 waals volume

Lambda-cyhalothrin -~ 42.02  44.84  39.62 672 =571 Average connectivity index Chi-2  X2a -210.247 (£ 29.937)
Dichloran 16.62 1557 1355 633 -18.50

Azinphos-ethy| 4217 4030  39.06 443 -7.39 3D-MoRSE signal 23 weighted by

Edifenphos 3503 3038 3123 -13.29 _10.84 atomic Sanderson electronegativity MoR23m  4.344 (+ 1.917)

EPN 38.60 31.10  37.48 -19.44 -2.89

Principal moments of inertia B PMIB ~736.915 (+ 204.543)
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Table Ill. The Values of the Descriptors that Were Used Table Iil. (continued) The Values of the Descriptors that
in this Work Were Used in this Work
Pesticide Elv BEHvZ  X2a MoR23m PMIC Pesticide Elv BEHvZ  X2a MoR23m  PMIC
Training set EPN 0.4030 2.6830 0.2990 -0.002  0.004263
Ametryn 0.4040 2.3320 0.3230  0.0520 0.009305 Ethion 0.6460  2.5960 0.3250  1.190  0.002842
Bromopropylate  0.4800  2.6170  0.2960 -0.028  0.002905 Fenitrothion 0.5190 2.2660 0.3040 -0.283  0.006177
Buprofezin 04420 2.5420 0.3080 -0.316  0.006056 Fenthion 04470  2.4940 0.2980 -0.355  0.007058
Carbaryl 0.3860 2.2410 0.2930 -0.102  0.012358 Fenvalerate 04860 25110 0.3220  0.0520 0.004066
Carbofuran 0.3080 2.4100 0.2970 -0.167  0.011960 Bendiocarb 0.3430 24040 0.2970 -0.318  0.015365
Chinomethionate  0.3960  2.0480  0.2800  0.0460 0.008852 Malathion 03630 25530 03210 0.1750 0.005548
Atrazine 0.4090 1.9050 0.3310 -0.142  0.011929 Metalaxyl 0.2940 2.6690 0.2980 0.1130 0.008977
Coumaphos 0.6200 25810 0.2890 -0.434  0.003270 Metribuzin 03670 23960 0.3060 -0.103  0.012819
Deltamethrin 0.6360 2.7870 0.2910  0.2260 0.002236 Oxadiazon 0.5370  2.4310  0.3040 -0.711  0.004153
Demeton-s- 04920 17370 0.3270  0.6460 0.006658 Permethrin 0.5880 2.7440 0.2940 -0.422  0.002683
methyl sulfone Bifenox 0.5560 2.6560 0.2980 -0.445  0.004074
Dimethoate 0.3820 1.9210 0.3350  0.6440 0.010072 Pirimicarb 0.4290 2.4310 0.3140 0.0340 0.010253
Dioxathion 0.3030  2.9690 0.3070 -0.171  0.003851 Profenofos 0.5860 2.3860 0.3130 0.0530 0.003844
Diphenylamine ~ 0.4740  1.6130 03080 -0.262  0.014148 Propoxur 0.3320  2.4060 0.3250 -0.291  0.016784
Disulfoton 04280 19210 0.3410  0.6970 0.005683 Simazine 04050 1.8460 0.3200 0.0270 0.015657
Ethoprophos 04050 1.8830 0.3410  0.4700 0.011196 Cis-tetrachloro- 04860  2.4800  0.2950 -0.111  0.004901
Azinphos-methyl  0.5050  2.5050 0.2840  0.1700 0.003986 vinphos
Etrimfos 0.4030  2.4000 0.3010 -0.241  0.008058 Triazophos 0.5050  2.6490 0.2980 0.0140 0.005241
Fenobucarb 0.3680 2.3710 0.3080 -0.266  0.015192 Vamidothion 0.5670  2.3520 0.3220  0.5910 0.004071
Folpet 0.5290 1.4510 0.2980 0.7790 0.007353
r;i)n;ioé:fn g'gzgg ;Z;?g 8'%38 8'22?8 8'82)282; (20) and MOPAC program (AM1 semi empirical method) (21)
isoprocarb 03250 23940 03170 -0209 0015729 on .thg basis of the minimum energy molecglar g.eometrles
Lenacil 04760 23630 02740 —0.027  0.009429 optimized by the Hyperchem package. Dragon is available soft-
Mecarbam 04070 24660 03240 01300 0.003714 ware (by Milano Chemometrics and the QSAR Research Group)
Methidathion 04300 22820 02970 05340 0.006281 for the calculation of more than 1600 molecular descriptors.
Methiocarb 0.3380  2.1650 0.3060 -0.007  0.008116 Subsequently, the method of stepwise multiple linear regres-
Metolachlor 0.3330  2.5530  0.2950  0.1080 0.009276 sion (MLR) was used to select the most important descriptors
Benfluralin 04090 23100 03100 0.0720 0.005333 and to calculate the coefficients relating the descriptors to
o,p’-DDT 04510 2.6020 03050  0.0860 0.005758 retention time. The descriptors that appear in the best MLR
Oxyflt{orfe” 0.4460  2.6740  0.3050 -0.019 ~ 0.003308 equation are shown in Table II. These descriptors are: first
Paraﬂ;?on " 04380 21320 03140 0.0340 0.004637 component WHIM index, highest eigenvalue n.7 of burden
Eﬁgar;tfn'met Y 8';”838 5'528 8'32178 _81220 8'88223? matrix / weighted by atomic van der Waals volume; average
Phosalone 05210 25360 02930 —0.106 0003714 connectivity index Chi-2, 3D-MoRSE signal 23 weighted by
p,p-DDD 05030 26110 03020 02780 0.005325 atomic Sanderson electronegativity; and principal moments of
p,p-DDE 05390 25500 03020 —0.163  0.005483 inertia B. These descriptors were used as inputs for generated
p,p-DDT 05120 26110 03080 0.0810 0.005302 ANNs.
Prometryn 0.4530 2.4310 0.3320 0.1460 0.008685 A detailed description of the theory behind of these descrip-
Prothiofos 0.4560 2.4220 0.3130  0.4290 0.004118 tors has been adequately described elsewhere (22). E1lv is one
Quinalphos 04570 24950 0.2960 -0.224  0.006828 of the WHIM descriptors obtained as statistical indices of the
Bifentrine 04910 27890 02900 -0.046  0.001542 atoms projected onto 3 principal components obtained from
Quizalofob-p- ~ 0.5970  2.6990  0.2980 -0.407  0.001889 weighted covariance matrices of the atomic coordinates (23).
?hty)l ; 04680 24310 03540 03520 0.005462 Molecular descriptor obtained from the positive and negative
Tfirfllj]r:I?n 03780 23050 03110 0080  0.005426 eigenvalue of the adjacency matrix weighted the diagonal ele-
Bromophos-ethyl 0.6530 19210 03110 0092  0.003690 ments with atom weights are named BCUT descriptors (24).
BEHV7 is the highest eigenvalue n.7 of burden matrix weighted
Prediction set by atomic van der Waals volume. Topological descriptors were
Chlorofenson ~ 0.6160 24110 0.3060 -0.188  0.005205 calculated using two-dimensional representation of the mole-
Ehlobrgbenz'late 0"6‘;70 i;g;g O;Sgg ’8'?2; 8'8017(;22 cules (25). MoR23m is one of the 3D-MoRSE descriptors that
c;i/hmalo;]-rin 06210 2. 0. e 00174 can be calculated by summing at.omic properties viewed by
Dichloran 02930 09400 03110 -0.09% 0019515 different angular_scattermg functhns. The 3D-MoRSE codes
Azinphos-cthyl 05460 26490 02920  0.1300 0.003563 have great potential for representation of molecular structure.
Edifenphos 0.4820 2.6840 0.3070 -0.097  0.007582 It is worth noting that they reflect the three-dimensional

arrangement of the atoms of a molecule and do not reflect
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the chemical bonds (26). Principal moments of inertia B
(PMIB) was calculated using the MOPAC program (Version 6)
(21).

ANN generation

The program for the feed-forward neural network that was
trained by a back-propagation algorithm was written in FOR-
TRAN 90. This network has five nodes in the input layer and
one node in the output layer. Descriptors that appeared in the
selected MLR model were used as inputs for the generated
ANN, and its output was the retention time for the molecule of
interest. The number of nodes in the hidden layer would be
optimized. The initial weights were randomly selected from a
uniform distribution that ranged between -0.3 and +0.3. The
initial bias values were set to be one. These values were opti-
mized during the network training. The value of each input was
divided into its mean value to bring the values of the input vari-
ables into the dynamic range of the sigmoid transfer function
in the ANN. Before training, the network was optimized for the
number of nodes in the hidden layer, learning rates, and
momentum. Then, the network was trained using the training
set to optimize the values of weights and biases. Finally in
order to evaluate the prediction power of the ANN, a trained
network was employed to calculate the retention time for the
prediction set.

Results and Discussion

The data set and corresponding observed and ANN predicted
values of the retention time of all pesticides studied in this
work are shown in Table I. Table IT shows the best MLR models.
It can be seen from Table II that five descriptors are used in the
MLR model. These descriptors are: E1v, BEHv7, X2a, MoR23,
and PMIB. Each of these variables encodes different aspects of
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Figure 1. The parameters of the number of nodes in the hidden layer,
weights and biases learning rates, and momentum against error.

the molecular structure. The calculated values of these descrip-
tors are shown in Table III for all the molecules included in the
data set.

The next step was the generation of the artificial neural net-
work. Before training the network according to Figure 1, the
parameters of the number of nodes in the hidden layer, weights
and biases learning rates, and momentum values were opti-
mized, which were 5, 0.7, 0.9, and 0.6 respectively. After opti-
mization of the ANN parameters, the network was trained
using a training set for the adjustment of weights and biase
values. To control the over fitting of the network during the
training procedure, the values of standard error of calibration
(SEC) and standard error of prediction (SEP) were calculated
and recorded to monitor the extent of the learning after each
100 iterations. Results showed that after 2800 iterations, the
SEP values started to increase and over fitting began. To main-
tain the predictive power of the network at a desirable level,
training was stopped at this point. For the evaluation of the
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Figure 2. Plot of the ANN predicted retention time against the exper-
imental values.
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Figure 3. Plot of the MLR predicted retention time against the experi-
mental values.

403



predictive power of the network, a trained ANN was used to
predict the retention time of the pesticide included in the pre-
diction set. Table I represents the experimental, MLR, and
ANN predicted values of retention time for the training and
prediction set compounds. The correlation coefficients of cal-
ibration and prediction for the MLR model were 0.958 and
0.882, and for the ANN model, they were 0.942 and 0.946,
respectively, which shows the superiority of the ANN over the
MLR model. The standard errors of calibration and prediction
for the MLR model is 2.71 and 4.68 should be compared with
the values of 3.41 and 2.90, respectively, for the ANN model. In
the case of the ANN, the maximum and minimum relative
errors for the predicted retention time are 82.38% and 0.53%
for diphenylamine and parathion, respectively. However, with
the exception of diphenylamine, the predicted values are in
agreement with the results obtained by the experiment. Fig-
ures 2 and 3 show the plots of the ANN and MLR predicted
versus the experimental values for the retention time of the
training and prediction set. The residuals of the ANN and MLR
calculated values of the retention time were propagated in
both sides of zero line that indicates no systematic error exists
in the development of the ANN.

Conclusion

The results of this study demonstrate that the QSPR method
using the ANN techniques can generate suitable models for the
prediction of retention time. The key strength of the neural
networks is their ability to allow for flexible mapping of the
selected features by manipulating their functional dependence
implicitly, unlike regression analysis. Neural network handles
both linear and nonlinear relationships without adding com-
plexity to model. This capability offset the larger computing
time required and complexity of the ANN method with respect
to MLR.
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