
A quantitative structure–property relationship (QSPR) study
based on multiple linear regression (MLR) and artificial neural
network (ANN) techniques is carried out to investigate the
retention time behavior of some pesticides on the DB-5ms
fused-silica column in gas chromatography. Five descriptors
selected in the MLR model are: first component WHIM index
(E1v), highest eigenvalue n.7 of burden matrix / weighted by
atomic van der waals volume (BEHv7); average connectivity index
Chi-2 (X2a), 3D-MoRSE signal 23 weighted by atomic Sanderson
electronegativity (MoR23m); and principal moments of
inertia B (PMIB). A 5-5-1 ANN is also generated to investigate the
retention behavior of described pesticides using the same
descriptors MLR model as inputs. The statistical parameters
derived from MLR and ANN for all molecules are: correlation
coefficient (R)MLR = 0.929, standard errors (SE)MLR = 3.452, RANN =
0.943, and SEANN = 3.112. The mean of relative errors between the
MLR and ANN calculated and the experimental values of the
retention times for the prediction set are 13.8% and 9.04%,
respectively. The correlation coefficient and standard error of
ANN model compared with MLR models showed the superiority
of ANNs over regression models. This is partly due to the fact
that ANN considers the interaction between different
parameters as well as nonlinear relation.

Introduction

Pesticide is a term used for a broad range of chemicals (syn-
thetic or natural) that serve to control insects, fungi, bacteria,
and other pests. Monitoring of pesticide residue is one of the
most important aspects in minimizing potential hazards to
human health. Numerous analytical methods for determina-
tion pesticide residue have been published (1–3). The one most
frequently used is gas chromatography (GC).

Quantitative structure–property relationships (QSPRs) have
been demonstrated to be a powerful tool for the investigation

of the chromatographic parameters. QSPRs have been used to
obtain simple models to explain and predict the chromato-
graphic behavior of various classes of compounds. QSPRs have
been used extensively to explain separation mechanisms, pre-
dict retention behavior, and characterize the physicochemical
properties of solutes in thin-layer chromatography (4), GC
(5,6), and high-performance liquid chromatography (7,8). Also,
there are some reports on QSPR studies in capillary elec-
trophoresis (9–11). QSPR study cannot only develop a method
for the prediction of the property of interests but also can
identify and describe important structural features of mole-
cules that are responsible for variations in molecular proper-
ties. The advantage of this approach over other methods lies in
the fact that the descriptors used can be calculated from struc-
ture alone and are not dependent on any experiment proper-
ties. This method has become very useful in the prediction of
physicochemical properties.

An artificial neural network (ANN) consists of many path-
ways and nodes organized into a sequence of layers. The first
layer is an input layer with one node for each variable. The last
layer is an output layer consisting of one node for the variable
to be investigated. In between layers, there is a series of one or
more hidden layer(s) consisting of a number of nodes, which
are responsible for learning. Nodes of one layer are connected
to the nodes of other layer. Each connection is represented by
a number called weight. Initially, a learning phase is defined in
which each of the input parameter is applied to a processing
element. The weight between these parameters is adjusted
until the output is correct. Then the system can be applied to
unknowns (12). ANNs have been applied to a wide range chem-
ical problems such as: simulation of mass spectra (13), pre-
diction of carbon-13 NMR shift (14), ion interaction (15), GC
(16,17), and liquid chromatography (12,18). It also can be used
in classification and pattern recognition.

The goal of the present work was to generate a QSPR model
between the molecular based structural parameters and
observed retention time of some pesticides on the fused silica
column. Then, this ANN was employed for the prediction of
retention time of some pesticides.
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Experimental

Data set
The data set of the retention time of pesticides on DB-5ms

fused-silica column was taken from the work by X.G. Chu (19).
A collection of 70 pesticides was chosen as the data set and was
randomly divided into two groups: a training set and a predic-
tion set consisting of 45 and 25 molecules, respectively. The
molecules in the data set including different pesticides are
shown in Table I. The training set was used for the model gen-
eration and the prediction set was used for the evaluation of the
generated model.

Descriptors
The molecular descriptors used to search for the best model

of the retention time were calculated by the Dragon program

Table I. Data Set and Corresponding Observed and
Predicted Values of the Retention Time

Retention %Error %Error
Pesticide name time MLR ANN (MLR) (ANN)

Training set
Ametryn 22.65 19.96 23.19 –11.86 2.38
Bromopropylate 38.57 35.83 35.97 –7.1 –6.75
Buprofezin 31.54 27.33 27.94 –13.33 –11.42
Carbaryl 22.23 21.79 24.54 –1.96 10.40
Carbofuran 17.37 18.48 20.36 6.39 17.24
Chinomethionate 28.04 26.78 25.51 –4.5 –9.04
Atrazine 17.54 12.52 20.55 –28.65 17.17
Coumaphos 43.26 41.75 38.84 –3.48 –10.23
Deltamethrin 47.87 47.29 44.57 –1.21 –6.89
Demeton-s-methyl 23.20 23.40 25.07 0.85 8.05
sulfone
Dimethoate 16.81 15.28 19.09 –9.13 13.59
Dioxathion 18.09 26.32 22.00 45.52 21.64
Diphenylamine 13.62 16.12 24.84 18.37 82.38
Disulfoton 19.41 19.70 21.10 1.48 8.72
Ethoprophos 14.01 13.25 17.59 –5.41 25.52
Azinphos-methyl 40.52 38.78 36.08 –4.3 –10.97
Etrimfos 20.25 24.70 23.58 21.98 16.43
Fenobucarb 13.32 15.96 12.58 19.79 –5.55
Folpet 27.76 29.18 28.55 5.12 2.85
Formothion 20.67 21.70 26.74 4.98 29.39
Iprodione 38.21 39.36 36.28 3.02 –5.04
Isoprocarb 11.67 12.01 15.42 2.95 32.15
Lenacil 35.25 33.54 32.64 –4.85 –7.42
Mecarbam 27.94 25.37 24.01 –9.2 –14.08
Methidathion 28.55 30.63 27.35 7.28 –4.21
Methiocarb 23.74 19.71 20.11 –16.98 –15.28
Metolachlor 24.77 24.36 22.91 –1.65 –7.52
Benfluralin 15.58 16.75 14.51 7.52 –6.90
o,p’-DDT 33.40 30.82 29.31 –7.73 –12.24
Oxyfluorfen 31.79 32.47 29.37 2.15 –7.61
Parathion 25.17 25.34 25.04 0.69 –.53
Parathion-methyl 22.00 23.87 24.26 8.48 10.27
Phorate 15.82 14.11 18.42 –10.82 16.45
Phosalone 40.65 36.89 38.99 –9.24 –4.07
p,p’-DDD 33.26 35.18 32.73 5.77 –1.59
p,p’-DDE 30.76 34.42 34.04 11.91 10.67
p,p’-DDT 35.46 33.51 32.49 –5.49 –8.39
Prometryn 22.95 22.05 25.72 –3.91 12.10
Prothiofos 30.41 30.72 27.94 1 –8.11
Quinalphos 27.84 30.06 29.87 7.96 7.28
Bifenthrin 39.16 39.85 34.12 1.77 –12.86
Quizalofob-p-ethyl 44.69 40.78 41.69 –8.75 –6.71
Terbufos 18.40 21.42 15.51 16.4 –15.68
Trifluralin 15.45 14.28 12.48 –7.58 –19.24
Bromophos-ethyl 28.85 34.90 25.48 20.98 –11.67

Prediction set
Chlorofenson 29.80 36.34 32.56 21.95 9.26
Chlorobenzilate 32.82 32.15 31.23 –2.05 –4.86
Lambda-cyhalothrin 42.02 44.84 39.62 6.72 –5.71
Dichloran 16.62 15.57 13.55 –6.33 –18.50
Azinphos-ethyl 42.17 40.30 39.06 –4.43 –7.39
Edifenphos 35.03 30.38 31.23 –13.29 –10.84
EPN 38.60 31.10 37.48 –19.44 –2.89

Table I. (continued) Data Set and Corresponding
Observed and Predicted Values othe Retention Time

Retention %Error %Error
Pesticide name time MLR ANN (MLR) (ANN)

Ethion 33.81 42.92 37.82 26.95 11.87
Fenitrothion 23.76 29.86 25.25 25.66 6.26
Fenthion 25.00 28.41 28.00 13.63 11.99
Fenvalerate 38.34 29.34 35.05 –23.46 –8.59
Bendiocarb 15.23 16.96 15.31 11.35 .56
Malathion 24.67 23.38 22.17 –5.23 –10.12
Metalaxyl 22.94 22.97 20.90 .12 -8.89
Metribuzin 21.57 18.97 22.92 –12.04 6.26
Oxadiazon 31.37 31.61 32.85 .75 4.72
Permethrin 43.01 40.88 37.87 –4.96 –11.95
Bifenox 39.71 36.70 35.64 –7.58 –10.24
Pirimicarb 20.91 14.00 22.91 –33.04 9.57
Propoxur 13.41 9.63 14.14 –28.21 5.44
Profenofos 30.61 35.30 34.58 15.32 12.97
Simazine 17.17 12.18 21.06 –29.09 22.66
Cis-tetrachlorovinphos 29.37 33.46 31.61 13.94 7.61
Triazophos 34.58 35.32 33.31 2.14 –3.68
Vamidothion 29.06 34.39 32.87 18.33 13.12

Table II. Specification of Multiple Linear Regression
Models

Descriptors Notation Coefficient

Constant 57.368 (± 13.276)

First component WHIM index E1v 48.248 (± 7.286)

Highest eigenvalue n.7 of burden BEHv7 7.566 (± 2.006)
matrix/weighted by atomic van der
waals volume

Average connectivity index Chi-2 X2a –210.247 (± 29.937)

3D-MoRSE signal 23 weighted by
atomic Sanderson electronegativity MoR23m 4.344 (± 1.917)

Principal moments of inertia B PMIB –736.915 (± 204.543)

401



402

(20) and MOPAC program (AM1 semi empirical method) (21)
on the basis of the minimum energy molecular geometries
optimized by the Hyperchem package. Dragon is available soft-
ware (by Milano Chemometrics and the QSAR Research Group)
for the calculation of more than 1600 molecular descriptors.
Subsequently, the method of stepwise multiple linear regres-
sion (MLR) was used to select the most important descriptors
and to calculate the coefficients relating the descriptors to
retention time. The descriptors that appear in the best MLR
equation are shown in Table II. These descriptors are: first
component WHIM index, highest eigenvalue n.7 of burden
matrix / weighted by atomic van der Waals volume; average
connectivity index Chi-2, 3D-MoRSE signal 23 weighted by
atomic Sanderson electronegativity; and principal moments of
inertia B. These descriptors were used as inputs for generated
ANNs.

A detailed description of the theory behind of these descrip-
tors has been adequately described elsewhere (22). E1v is one
of the WHIM descriptors obtained as statistical indices of the
atoms projected onto 3 principal components obtained from
weighted covariance matrices of the atomic coordinates (23).
Molecular descriptor obtained from the positive and negative
eigenvalue of the adjacency matrix weighted the diagonal ele-
ments with atom weights are named BCUT descriptors (24).
BEHv7 is the highest eigenvalue n.7 of burden matrix weighted
by atomic van der Waals volume. Topological descriptors were
calculated using two-dimensional representation of the mole-
cules (25). MoR23m is one of the 3D-MoRSE descriptors that
can be calculated by summing atomic properties viewed by
different angular scattering functions. The 3D-MoRSE codes
have great potential for representation of molecular structure.
It is worth noting that they reflect the three-dimensional
arrangement of the atoms of a molecule and do not reflect

Table III. The Values of the Descriptors that Were Used
in this Work

Pesticide E1v BEHv7 X2a MoR23m PMIC

Training set
Ametryn 0.4040 2.3320 0.3230 0.0520 0.009305
Bromopropylate 0.4800 2.6170 0.2960 –0.028 0.002905
Buprofezin 0.4420 2.5420 0.3080 –0.316 0.006056
Carbaryl 0.3860 2.2410 0.2930 –0.102 0.012358
Carbofuran 0.3080 2.4100 0.2970 –0.167 0.011960
Chinomethionate 0.3960 2.0480 0.2800 0.0460 0.008852
Atrazine 0.4090 1.9050 0.3310 –0.142 0.011929
Coumaphos 0.6200 2.5810 0.2890 –0.434 0.003270
Deltamethrin 0.6360 2.7870 0.2910 0.2260 0.002236
Demeton-s- 0.4920 1.7370 0.3270 0.6460 0.006658
methyl sulfone
Dimethoate 0.3820 1.9210 0.3350 0.6440 0.010072
Dioxathion 0.3030 2.9690 0.3070 –0.171 0.003851
Diphenylamine 0.4740 1.6130 0.3080 –0.262 0.014148
Disulfoton 0.4280 1.9210 0.3410 0.6970 0.005683
Ethoprophos 0.4050 1.8830 0.3410 0.4700 0.011196
Azinphos-methyl 0.5050 2.5050 0.2840 0.1700 0.003986
Etrimfos 0.4030 2.4000 0.3010 –0.241 0.008058
Fenobucarb 0.3680 2.3710 0.3080 –0.266 0.015192
Folpet 0.5290 1.4510 0.2980 0.7790 0.007353
Formothion 0.4960 1.9130 0.3190 0.0850 0.010007
Iprodione 0.5890 2.4310 0.3000 0.2670 0.003937
Isoprocarb 0.3250 2.3940 0.3170 –0.209 0.015729
Lenacil 0.4760 2.3630 0.2740 –0.027 0.009429
Mecarbam 0.4070 2.4660 0.3240 0.1300 0.003714
Methidathion 0.4300 2.2820 0.2970 0.5340 0.006281
Methiocarb 0.3380 2.1650 0.3060 –0.007 0.008116
Metolachlor 0.3330 2.5530 0.2950 0.1080 0.009276
Benfluralin 0.4090 2.3100 0.3100 0.0720 0.005333
o,p’-DDT 0.4510 2.6020 0.3050 0.0860 0.005758
Oxyfluorfen 0.4460 2.6740 0.3050 –0.019 0.003308
Parathion 0.4380 2.1320 0.3140 0.0340 0.004637
Parathion-methyl 0.4150 2.1260 0.3070 –0.155 0.005958
Phorate 0.3800 1.9160 0.3410 0.4630 0.008695
Phosalone 0.5210 2.5360 0.2930 –0.106 0.003714
p,p’-DDD 0.5030 2.6110 0.3020 0.2780 0.005325
p,p’-DDE 0.5390 2.5500 0.3020 –0.163 0.005483
p,p’-DDT 0.5120 2.6110 0.3080 0.0810 0.005302
Prometryn 0.4530 2.4310 0.3320 0.1460 0.008685
Prothiofos 0.4560 2.4220 0.3130 0.4290 0.004118
Quinalphos 0.4570 2.4950 0.2960 –0.224 0.006828
Bifentrine 0.4910 2.7890 0.2900 –0.046 0.001542
Quizalofob-p- 0.5970 2.6990 0.2980 –0.407 0.001889
ethyl
Terbufos 0.4680 2.4310 0.3540 0.3520 0.005462
Trifluralin 0.3780 2.3050 0.3110 –0.080 0.005426
Bromophos-ethyl 0.6530 1.9210 0.3110 –0.092 0.003690

Prediction set
Chlorofenson 0.6160 2.4110 0.3060 –0.188 0.005205
Chlorobenzilate 0.4570 2.5910 0.2880 –0.263 0.007029
Lambda- 0.6210 2.7890 0.2930 –0.162 0.001742
cyhalothrin
Dichloran 0.2930 0.9400 0.3110 –0.096 0.019515
Azinphos-ethyl 0.5460 2.6490 0.2920 0.1300 0.003563
Edifenphos 0.4820 2.6840 0.3070 –0.097 0.007582

Table III. (continued) The Values of the Descriptors that
Were Used in this Work

Pesticide E1v BEHv7 X2a MoR23m PMIC

EPN 0.4030 2.6830 0.2990 –0.002 0.004263
Ethion 0.6460 2.5960 0.3250 1.190 0.002842
Fenitrothion 0.5190 2.2660 0.3040 –0.283 0.006177
Fenthion 0.4470 2.4940 0.2980 –0.355 0.007058
Fenvalerate 0.4860 2.5110 0.3220 0.0520 0.004066
Bendiocarb 0.3430 2.4040 0.2970 –0.318 0.015365
Malathion 0.3630 2.5530 0.3210 0.1750 0.005548
Metalaxyl 0.2940 2.6690 0.2980 0.1130 0.008977
Metribuzin 0.3670 2.3960 0.3060 –0.103 0.012819
Oxadiazon 0.5370 2.4310 0.3040 –0.711 0.004153
Permethrin 0.5880 2.7440 0.2940 –0.422 0.002683
Bifenox 0.5560 2.6560 0.2980 –0.445 0.004074
Pirimicarb 0.4290 2.4310 0.3140 0.0340 0.010253
Profenofos 0.5860 2.3880 0.3130 0.0530 0.003844
Propoxur 0.3320 2.4060 0.3250 –0.291 0.016784
Simazine 0.4050 1.8460 0.3200 0.0270 0.015657
Cis-tetrachloro- 0.4860 2.4800 0.2950 –0.111 0.004901
vinphos
Triazophos 0.5050 2.6490 0.2980 0.0140 0.005241
Vamidothion 0.5670 2.3520 0.3220 0.5910 0.004071
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the chemical bonds (26). Principal moments of inertia B
(PMIB) was calculated using the MOPAC program (Version 6)
(21).

ANN generation
The program for the feed-forward neural network that was

trained by a back-propagation algorithm was written in FOR-
TRAN 90. This network has five nodes in the input layer and
one node in the output layer. Descriptors that appeared in the
selected MLR model were used as inputs for the generated
ANN, and its output was the retention time for the molecule of
interest. The number of nodes in the hidden layer would be
optimized. The initial weights were randomly selected from a
uniform distribution that ranged between −0.3 and +0.3. The
initial bias values were set to be one. These values were opti-
mized during the network training. The value of each input was
divided into its mean value to bring the values of the input vari-
ables into the dynamic range of the sigmoid transfer function
in the ANN. Before training, the network was optimized for the
number of nodes in the hidden layer, learning rates, and
momentum. Then, the network was trained using the training
set to optimize the values of weights and biases. Finally in
order to evaluate the prediction power of the ANN, a trained
network was employed to calculate the retention time for the
prediction set.

Results and Discussion

The data set and corresponding observed and ANN predicted
values of the retention time of all pesticides studied in this
work are shown in Table I. Table II shows the best MLR models.
It can be seen from Table II that five descriptors are used in the
MLR model. These descriptors are: E1v, BEHv7, X2a, MoR23,
and PMIB. Each of these variables encodes different aspects of

the molecular structure. The calculated values of these descrip-
tors are shown in Table III for all the molecules included in the
data set.

The next step was the generation of the artificial neural net-
work. Before training the network according to Figure 1, the
parameters of the number of nodes in the hidden layer, weights
and biases learning rates, and momentum values were opti-
mized, which were 5, 0.7, 0.9, and 0.6 respectively. After opti-
mization of the ANN parameters, the network was trained
using a training set for the adjustment of weights and biase
values. To control the over fitting of the network during the
training procedure, the values of standard error of calibration
(SEC) and standard error of prediction (SEP) were calculated
and recorded to monitor the extent of the learning after each
100 iterations. Results showed that after 2800 iterations, the
SEP values started to increase and over fitting began. To main-
tain the predictive power of the network at a desirable level,
training was stopped at this point. For the evaluation of the

Figure 3. Plot of the MLR predicted retention time against the experi-
mental values.

Figure 2. Plot of the ANN predicted retention time against the exper-
imental values.

Figure 1. The parameters of the number of nodes in the hidden layer,
weights and biases learning rates, and momentum against error.
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predictive power of the network, a trained ANN was used to
predict the retention time of the pesticide included in the pre-
diction set. Table I represents the experimental, MLR, and
ANN predicted values of retention time for the training and
prediction set compounds. The correlation coefficients of cal-
ibration and prediction for the MLR model were 0.958 and
0.882, and for the ANN model, they were 0.942 and 0.946,
respectively, which shows the superiority of the ANN over the
MLR model. The standard errors of calibration and prediction
for the MLR model is 2.71 and 4.68 should be compared with
the values of 3.41 and 2.90, respectively, for the ANN model. In
the case of the ANN, the maximum and minimum relative
errors for the predicted retention time are 82.38% and 0.53%
for diphenylamine and parathion, respectively. However, with
the exception of diphenylamine, the predicted values are in
agreement with the results obtained by the experiment. Fig-
ures 2 and 3 show the plots of the ANN and MLR predicted
versus the experimental values for the retention time of the
training and prediction set. The residuals of the ANN and MLR
calculated values of the retention time were propagated in
both sides of zero line that indicates no systematic error exists
in the development of the ANN.

Conclusion

The results of this study demonstrate that the QSPR method
using the ANN techniques can generate suitable models for the
prediction of retention time. The key strength of the neural
networks is their ability to allow for flexible mapping of the
selected features by manipulating their functional dependence
implicitly, unlike regression analysis. Neural network handles
both linear and nonlinear relationships without adding com-
plexity to model. This capability offset the larger computing
time required and complexity of the ANN method with respect
to MLR.
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